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ABSTRACT
The size of Large Language Models (LLMs), and Machine Learning
(ML) models in general, is a key factor of their capacity and quality
of their responses. But it comes with a high cost, both during the
training and the model execution phase. Recently, various model
merging techniques and Mixture of Experts (MoE) architectures are
gaining popularity as they enable the creation of large models by
combining other existing ones (the "experts" in the MoE approach).
Creating these combinations remains a deep technical task with
many possible configurations to consider. In this sense, this paper
aims to democratize the creation of combined ML models by pre-
senting a product line approach to the specification and training
of this type of ML architectures from an initial feature model that
helps users define, among other aspects, the type of models they
want to combine, the combination strategy and even, for the MoE
approach, the tasks that should be associated to each expert.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Model-driven software engineering; • Computing method-
ologies → Machine learning approaches.
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1 INTRODUCTION
Many of the new Large Language Models (LLMs) topping the LLM
leaderboards are not trained from scratch but created by combining
other preexisting LLMs. This is not only cheaper (both, in terms
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of time and money) but it also allows to push the limits of state-of-
the-art architectures by building models that excel at specific tasks
and domains by combining the knowledge of the merged models.

We are nowwitnessing an explosion of model composition strate-
gies and techniques but there is a lack of well-defined methods to
guide users interested in creating them. As with any other kind of
emerging software, it is necessary to define precise requirements
and properties of composite AI models in order to abstract its de-
velopment process from the underlying technology and to enable
non-technical users to create it. This paper advocates for the use
of a Software Product Lines (SPLs) to define and generate LLM
compositions by means of different merging algorithms.

Indeed, Software Modeling and Generative Software Develop-
ment is key to defining the properties, requirements, commonalities
and variabilities in system families. Machine Learning (ML) is es-
tablishing a new paradigm in Computer Science but we still lack
of modelling approaches, low-code tools and domain-specific lan-
guages (DSLs) for an easy, reusable and maintainable development
of this new type of intelligent systems. Even worse, we are start-
ing to see convoluted systems built on multiple smart components
where more variables are being involved and increasing the com-
plexity of the software development process [5].

Feature models capture all the possible products in an SPL [15].
We can therefore use feature models to define software families
of intelligent systems. While the use of ML for SPL development
has been widely explored, the other way around (using SPLs to
characterize ML systems, such as, in this case, compositions of
LLMs) not much.

In this sense, this paper proposes an SPL approach for the emerg-
ing field of combinations of LLMs. More specifically, we introduce a
feature model to characterize the dimensions and variability aspects
of this domain, together with a code generation approach able to
transform a feature configuration into an actual merged model. We
rely on Mergekit [11] for the generation phase and provide our
own tool support for the whole process.

The rest of the paper is structured as follows. Section 2 gives
some background on LLM composition techniques. Then, Section 3
presents our feature model for this domain while Section 4 discusses
how then a feature configuration could be transformed into a com-
bined and ready-to-use LLM. Section 5 presents our tool support,
Section 6 compares our approach with related work and, finally,
Section 7 draws some conclusions and further work.
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2 BACKGROUND
Large Language Models (LLMs) are showing impressive results in
a large variety of tasks [21]. But training a LLM from scratch is a
long process that requires massive amount of data and computing
power. Running inferences on them also requires a significant com-
putational cost. While the ML community is doing good work to
improve the efficiency of training and running LLMs, this is still an
open research challenge.

Nevertheless, over the last year, we have witnessed how a new
type of LLMs has started to populate (and top) the benchmark
leaderboards [7]. The common aspect of these LLMs is that they are
not trained from scratch but built through the combination of other
LLMs, proving that it is possible to combine multiple knowledge
sources into a single model at a fraction of the training cost. In this
section we briefly introduce the two major techniques in the area:
Model Merging and the Mixture of Experts approaches.

2.1 Model Merging
Model Merging is a technique that combines two or more pre-
trained LLMs into a single unified one. Currently, several merg-
ing methods have been successfully implemented. From simple
methods like linear weighted average, to more advanced ones such
as Task Arithmetic [13] or evolutionary optimization approaches
[2], among others. These merging methods have been proven to
generate new LLMs that outperform the original models alone. Fur-
thermore, the merging process can be run entirely on CPU or with
low GPU resources.

2.2 Mixture of Experts
In 1991, Jacobs et al. proposed a new supervised learning procedure
for systems composed ofmany separate neural networks [14]. These
networks would be trained to solve different problems and then, a
special gating network would be in charge of deciding, for a given
input, which networks (i.e., experts) would generate the output. This
Mixture of Experts (MoE), depicted in Figure 1, has recently gained
a lot of new attention thanks to its application to Transformer
models (the foundational architecture of most of the current state-
of-the-art LLMs [20]). The main advantage with respect to regular
LLMs is their sparsity. These models only use a subset of all their
parameters when running inference (i.e., some experts work while
others “sleep”), which allows for a faster inference compared to a
model with the same number of parameters.

While there are MoE models that are trained from scratch, there
is a new trend of combining preexisting LLMs, trained to solve
specific problems, and turn them into a MoE. These are being collo-
quially called FrankenMoEs to distinguish them from pre-trained
MoEs. For simplicity, we will use the term MoE to refer to Franken-
MoEs, and consider them as another technique of Model Merging.

3 THE FEATURE MODEL
This section introduces our feature model (FM) to characterize
the building of composite LLMs. As there is not a single feature
modelling notation [16], to express our complex FM, we combine
several syntaxes to express modularity and compositionality in FMs
[1], feature attributes consisting of name, domain and value [4] and
cardinality-based features [8].

Figure 1: Example MoE architecture. The gating network
generates weights for each expert, based on the given input.
Then, the output generated by each of the selected experts is
composed.

Figure 2 depicts the FM. The root feature is Composite. At the
first depth level, there are 2mandatory features: 1 - Composite tool,
which, at the moment, only has Mergekit as children features but
could be extended with new tools in the future, and 2 - Composite
config, which is the starting point for all the features related to the
LLM composition itself. From here, an alternative set of features,
composed by MoE and Merge is used to distinguish between MoE
or Merge composition strategies, since each of them will need a
different set of features to be properly defined. In the rest of the
section we comment on some of these properties but refer to the
technical documentation of the underlying merging techniques for
the full details.

A Mergemay be created by combining a set of models or slices
(see the alternative relationship with Merge). Slices are parts of mod-
els. These parts are defined by indicating the layers that we want
to select from a model (see layer_ini and layer_end leaf fea-
tures). Among other features, a Merge has a merge_method, which
determines the algorithm used to combine the selected models or
slices, and a tokenizer_source that defines the tokenizer to use
in the generated LLM.

A MoE has a base_model, a gate_mode that defines how the MoE
gates are initialized, the number of experts_per_token and the
experts (a minimum of 2 experts is required). Each expert has
a source_model, 1 or more positive_prompts (i.e., prompts that
will favor the selection of the expert by the gating network) and
an arbitrary number of negative_prompts (i.e., prompts that will
disfavor the selection of the expert).

There are other, smaller FMs that are embedded in the Composite
FM but that we define as separate sub-feature models linked to the
main one to avoid duplications and facilitate their evolution (if they
are updated, all embeddings in the core FM would be automatically
updated as the sub FMs are linked via references). These sub FMs are
model_reference (defining a model to be used within the merging
process) , base_model (some merging techniques need to define
explicitly what model plays the role of a base model, that simply
contains a model_reference), dtype (the data type used for the
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Figure 2: A Feature Model for configuring combinations of machine learning models

merging operation, e.g., float32 or int16) and parameter (used
to specify various parameters such as weights and densities, which
can be present at different levels of the FM).

Some features have non-standard cardinalities, such as expert,
that has a 2..* cardinality. This gives enough freedom to multiply
the number of sub-FMs with the same structure without restricting
the number of pre-defined trees in a feature configuration (e.g., a
MoE could be composed of 4, 8, 16, etc. experts). Additionally, there
are features embedding an attribute that enables the definition of
custom values when creating a configuration. Since there is only
1 attribute per feature at most, the attribute name is not present
in the diagram. The attribute domains can be open (e.g., strings,
positive integers, etc.) or closed (e.g., a predefined set of strings).

4 FROM A FEATURE CONFIGURATION TO A
COMPOSITE LLM

Our feature model encompasses all possible combinations of LLMs
that could be generated via the different merging techniques. Each
of the unique valid feature selections defines a feature configuration,
which precisely describes a composite LLM. This section discusses
how we go from the LLM combination configuration to a brand
new trained and running LLM deployed on premises or in a cloud
environment.

4.1 Generate the configuration scripts
The first step is to generate the necessary configuration scripts
representing the composite LLM in the appropriate input format
expected by the selected Composite tool.

Currently, the dominant tool in the market is Mergekit. There-
fore, only aMergekit generator has been implemented so far.Mergekit
requires a YAML configuration file indicating the LLMs to bemerged,
the merging technique and other required properties. Our generator
creates this YAML file by traversing the feature configuration and
transforming each feature selection into the corresponding YAML
excerpt.

4.2 Run the composition
The next step is to actually generate the new LLM. Our tool is able
to run Mergekit according to the previously defined YAML file and

right Mergekit parameters. The duration of the process will vary
depending on the available resources, the merging technique being
used and the LLM sizes. Once the process finishes, the generated
LLM will be stored in a local directory, containing all the model
weights and other configuration files. At this point, the LLM is
ready to be used and, optionally, deployed to a cloud environment
(see next section).

5 TOOL SUPPORT
This section describes the tool support for this work. All the com-
ponents are freely available as open source software1 and are part
of the BESSER low-code platform [3].

Firstly, we have developed a graphical front-end to facilitate the
creation of feature configurations. Users can go through the feature
model, select the features and then fill the configuration values
in the feature configuration panel showing the list of selected fea-
tures so far. This front-end has been built with Streamlit, a Python
framework for frontend development.

This configuration is then internally stored as a set of Python
objects that store the configuration values and the links with the
selected features. The classes for these objects are a simplification,
for the purpose of this specific LLM configuration feature model,
of the typical metamodels for FMs available in the literature (e.g.,
see [18]). A set of Python validators has been created to check the
stored configuration is valid.

Finally, our generator reads this information, produces the con-
figuration file described in the previous section and runs Mergekit
to build the composite LLM. Note that Mergekit allows the combi-
nation of locally stored LLMs. Nevertheless, it also supports Hug-
gingFace’s LLMs2, allowing to reference their ids directly from
the HuggingFace model hub. The LLM weights can be serialized
with Safetensors (best alternative, faster) or Pickle, and loaded with
many frameworks such as Tensorflowor PyTorch.

Our tool saves the generated LLM locally and it also allows to
publish it to HuggingFace, so that it can be immediately used by the
community. To enable this, the user must specify their HuggingFace
username, the license under which the LLM will be published and

1https://github.com/BESSER-PEARL/spl-for-ai
2https://huggingface.co/
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a valid HuggingFace access token (with write permissions). This
step is recommended as it makes the LLM accessible for everyone,
facilitates its installation and its reuse through the HuggingFace
API and Transformers library.

6 RELATEDWORK
AI techniques and, in particular, Generative AI approaches, have
promising applications in the field of software variability [12]. In-
deed, there are plenty of approaches using some type of ML ap-
proach for the creation, analysis and evolution of SPLs. For instance,
Temple et al. use ML to find the best set of constraints for feature
models [19]. and Saini et al. propose different approaches to test
SPLs by means of ML solutions, optimizing the number of tests to
be run to determine the validity of a product [17], among several
other examples.

Nevertheless, employing SPLs to configure a family of ML/AI
components has been much less explored. In [6], an SPL was put in
place to define the different parts of an ML workflow. More similar
to our proposal, other works aim to use SPLs to identify subsets or
parts of artificial neural networks (ANNs) to extract sub-tasks that
can be reused in other ANNs [9].

None of the existing approaches focus on LLMs and even less on
how to combine them, which is a major challenge nowadays and
the goal our proposal is aiming to facilitate it.

7 CONCLUSIONS AND FUTUREWORK
We have presented an SPL approach to create families of composite
ML models, aiming to capture similarities and variability among
the possible combinations available. We have considered two major
kinds of compositions: merging algorithms and Mixtures of Ex-
perts and their corresponding variability dimensions. We see our
approach as a new step towards the increasing use of SPL-driven
approaches for the configuration and generation of intelligent sys-
tems.

As future work, we plan to improve the feature model by for-
malizing in more detail the valid configurations, aiming to find
an optimal granularity level that allows us to model all relevant
restrictions but without hampering the usability of our approach by
making the feature model too complex. We would also like to build
an AI assistant to help users to create and evolve feature configu-
rations (e.g. based on previous “recipes” known by the assistant).
Finally, we will extend the feature model to cover both other types
of models (e.g. compositions of computer vision models) and other
aspects of the LLM creation process (e.g. composition of datasets,
including their metadata for trustworthiness AI results [10]). Ex-
tensions to the code generator to target new libraries will also be
implemented when needed.
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