
Towards a DSL to Formalize Multimodal
Requirements

Marcos Gomez-Vazquez
Luxembourg Institute of Science and Technology

Esch-sur-Alzette, Luxembourg
0000-0001-7176-0793

Jordi Cabot
Luxembourg Institute of Science and Technology

University of Luxembourg
Esch-sur-Alzette, Luxembourg

0000-0003-2418-2489

Abstract—Multimodal systems, which process multiple input
types such as text, audio, and images, are becoming increasingly
prevalent in software systems, enabled by the huge advancements
in Machine Learning. This triggers the need to easily define
the requirements linked to these new types of user interactions,
potentially involving more than one modality at the same time.
This remains an open challenge due to the lack of languages and
methods adapted to the diverse nature of multimodal interactions,
with the risk of implementing AI-enhanced systems that do not
properly satisfy the user needs.

In this sense, this paper presents MERLAN, a Domain-Specific
Language (DSL) to specify the requirements for these new
types of multimodal interfaces. We present the metamodel for
such language together with a textual syntax implemented as
an ANTLR grammar. A prototype tool enabling requirements
engineers to write such requirements and automatically generate
a possible implementation of a system compliant with them on
top of an agentic framework is also provided.

Index Terms—Domain-Specific Languages, Requirements En-
gineering, Multimodal User Interfaces, Agents

I. INTRODUCTION

With the explosion of Machine Learning and other AI
techniques, software systems are quickly adopting new types
of complex user interfaces that require processing new input
modalities such as text, audio and images. Sometimes, more
than one type at the same time. This type of interfaces are
known as Multimodal User Interfaces (MUIs). MUIs provide
an interface that bears the functionalities of human-human
interface [1]. It is a broad field within Human-Computer
Interaction (HCI) with different applications and definitions
depending on the context. The term “modality” refers to the
mode of communication used as input and output between the
human and the computer, like text, audio and image, although
other modalities are considered in other contexts (e.g., facial
expression, gestures, etc.).

While building this type of AI-enhanced systems is becom-
ing easier thanks to the constant influx of, for instance, new
multimodal Large Language Models (LLMs) that facilitate the
analysis of multimodal inputs, validating that the system is
satisfying the actual needs of the user is becoming more and
more complex. Indeed, we are missing proper requirements
engineering languages and techniques to facilitate a precise

This project is supported by the Luxembourg National Research Fund
(FNR) PEARL program, grant agreement 16544475.

specification of the MUI conditions that should trigger a
system response, the data (“entities” in the MUI terminology)
from the multimodal input that should be collected to provide
an adequate response and the actual response [2].

For the latter, current languages could be reused, but a new
way to specify MUI-driven requirements is needed for the first
two elements. Preliminary work in this area has focused on
requirements for chatbots. In particular, to identify what user
“intents” (i.e. expressions of users’ intentions or goals) the
chatbot should respond to, and what entities or parameters are
part of the user textual input matching to a specific intent [3] .
However, this is not the case with other modalities (e.g., image
or audio) and even less for requirements involving multiple
inputs.

To solve this problem, this paper presents MERLAN: a
Multimodal Environment Requirements Language1. MERLAN
aims to standardize the definition of multimodal requirements,
independently of the underlying technology being used to
process multimodal data. MERLAN is a Domain-Specific
Language (DSL) formalized with a language metamodel and
supported by a textual concrete syntax to help the users easily
define MUI requirements. Tool support is also available. It
consist of the language support but also a proof-of-concept
implementation of a transformation from the requirements to
a Python-based agent able to trigger system responses when
the requirements conditions are met.

The rest of the paper is structured as follows: Section II
introduces a running example to motivate and illustrate our
DSL; Section III presents the abstract syntax of the DSL while
Section IV focuses on its concrete syntax; Section V shows the
provided tool support; Section VI discusses the related work
of this paper; The research roadmap is discussed in Section
VII and, finally, Section VIII closes with the conclusions.

II. RUNNING EXAMPLE

To motivate and illustrate our approach, this section intro-
duces a running example that will be used throughout the
paper.

Let’s imagine that we need to specify the requirements for a
new home automation and security system, hereinafter referred
to as house agent. The house agent has some input devices to

1https://github.com/BESSER-PEARL/merlan

https://github.com/BESSER-PEARL/merlan


capture text, sound, video, temperature, light and movement.
It also has output devices for text and audio, in addition to the
capability of executing a set of predefined actions (i.e., actions
such as making a call or triggering the alarm).

Regardless of the actual software components in charge
of capturing information from the physical world (e.g., ML
models to detect objects from camera inputs), the house agent
needs to be provided with clear definitions of the entities that
can be recognized from all the different input devices, and
the rules that describe how those entities should be evaluated
by the agent in order to decide whether to trigger a certain
response.

For instance, regarding the image input devices, we could
define concrete entities such as person, dog, car, smoke
and fire. An audio entity could be strong_sound. More-
over, these entities can have attributes. The person entity
could have gender and ethnicity attributes, which during
the recognition process of the agent, should be filled with the
right values. The system needs other kind of more abstract
entities to be defined, such as “day or night” or “empty house”.
They are more abstract in the sense that they must be inferred
from parts of the input data instead of being directly identified
as objects in it.

With all these entities defined, we can design the rules the
agent will check to trigger some actions. For instance:

1) If smoke is detected: notify the house owner.
2) If (fire is detected) or (the house is empty and (some

cars or some persons are detected)): Activate the alarm,
notify the house owner and call the police.

3) If (strong sound) and (during night): turn on lights
4) If a car with unrecognized plate number is detected:

notify the house owner
The first rule simply defines the presence of a concrete

entity (smoke). The second consists of the composition of
multiple concrete and abstract requirements with “and” and
“or” operators. The third expects the detection of an audio
concrete entity (strong sound) and an image abstract entity
(night). The last requirement is satisfied when not only an
entity (car) but also a specific attribute value (the license plate)
are identified.

This set of rules and entities would compose the require-
ments of the house agent’s multimodal interface, describing
what conditions and based on what data the system should
react to, and the actions to be taken in case of requirements
satisfaction. These requirements could be described using
natural language, but without enough precision to implement
them with confidence.

Therefore, we believe a DSL to enable the formal definition
of MUI requirements in a more precise way is needed. The
next section introduces MERLAN, the DSL we propose for
this.

III. DSL DESIGN

A Domain-Specific Language (DSL) is a specialized pro-
gramming or modeling language designed to address problems
within a specific domain. Unlike general-purpose languages,

DSLs provide higher-level abstractions tailored to the concepts
and rules of the domain, making it easier to express models,
transformations, and constraints [4]. A DSL is defined by an
abstract syntax that specifies the DSL main concepts (and their
interrelationships) and a concrete syntax that implements it
(usually via a textual or graphical notation).

The abstract syntax of a DSL defines its structural represen-
tation via a metamodel specification independent of any con-
crete syntax or notation. This section presents the metamodel
of the core abstract syntax of MERLAN for expressing MUI
requirements, outlining its key elements and relationships.

Figure 1 illustrates this metamodel expressed using a UML
class diagram formalism, as usual.

Next subsections describe in more detail the main elements
of the metamodel. We split the explanation in two subections,
one covering the metaclasses focused on the definition of
Multimodal Requirements and one focusing more on the
definition of Entities referenced in those requirements.

A. Definition of Multimodal Requirements

A MultimodalRequirement defines the rules that need
to be evaluated in a system with multimodal inputs. These
rules provide formal definitions of conditions the system
should match in order to trigger some actions.

The metamodel defines two kinds of requirements: simple
and complex.

1) Complex Requirements: A ComplexRequirement is
a composition of MultimodalRequirements, which can
be themselves also complex or simple. Requirements are com-
posed with boolean operators, namely AND (all requirements
under it must be satisfied), OR (at least one requirement must
be satisfied) and NOT (the requirement condition under it must
not be satisfied).

2) Simple Requirements: A SimpleRequirement ex-
presses a condition on a single entity. When defining a
simple requirement, we are creating a rule that would be
satisfied when an entity is detected. Simple requirements have
a confidence attribute to indicate the minimum confidence
that needs to be achieved for the requirement to be satisfied
(i.e., confidence on the entity detection).
SimpleRequirement has AbstractRequirement

and ConcreteRequirement to distinguish between sim-
ple requirements referencing concrete and abstract enti-
ties, respectively. The difference between them is that a
ConcreteRequirement can define a cardinality to specific
the number of instances of that entity that should be detected.
The cardinality notation is based on the UML cardinalities,
allowing to define specific values ([n], exactly n instances),
concrete intervals ([m..n], where m < n and m >= 0) or
unbounded intervals ([n..*], where n >= 0). As we will
see later, entities can have attributes which can also be used
during the matching process.

A SimpleRequirement has a specific modality, indicat-
ing which modality should be considered to satisfy the require-
ment. For instance, a SimpleRequirement referencing
a Person concrete entity with Image modality will be



Fig. 1. MERLAN Metamodel

evaluated based on image inputs (i.e., looking for a person in
an image), while the same requirement with Audio modality
will analyze the audio input to find a person (i.e., if someone
is speaking and the voice is detected). When evaluating the
requirements, some attributes make sense only for specific
modalities (e.g., the color of a Car entity only makes
sense for image modality). This is something to consider when
defining the entity attributes.

B. Definition of Entities

An Entity represents a real-world concept, either material
or abstract, that can be distinctly identified in some type of
multimodal input. The simplest way to define entities is via
a name and attributes that specify its structure and content.
When defining an entity, we define its attributes, which may
have specific values or empty ones (i.e., unknown values).

Setting an attribute value enforces the recognition en-
gine to identify those entities with that exact attribute
value. For instance, if we define a Person entity with
gender = "male" attribute, we could use that entity
within a requirement to restrict its applicability to men.

An attribute value can be left empty with the purpose of
dynamically inferring its value during the recognition process.
Following the Person entity example, a gender attribute
with empty value should make the recognition engine identify

both men and women and fill the gender value of the
recognized Person at runtime. Attributes with empty values
also serve as placeholders that can be set at the requirement
level. This mechanism provides flexibility by allowing the
definition of generic entities and deferring context-specific
details to individual requirements.

We consider two types of entities based on their nature,
namely abstract and concrete entities.

1) Concrete Entities: A ConcreteEntity is a subclass
of Entity that represents a concrete object or being within
the multimodal environment that can be described in terms of
its physical existence and referenced or interacted within the
environment.

2) Abstract Entities: AbstractEntity is a subclass
of Entity that does not have a clearly bounded physical
existence but represents a concept, idea, property or classifi-
cation that can be inferred from the environment. An example
abstract entity could be night, indicating if an image is
taken at night or not. A more abstract one could be hazard,
indicating the level of hazard perceived from an image or audio
(we could define some attributes for this property to describe
our “hazard criteria”).

3) Predefined and Arbitrary Entities: The metamodel figure
includes example instantiations of both concrete and abstract
entities with default attributes. For instance, a simplified



Person concrete entity can be defined in terms of the
attributes gender and ethnicity. Abstract and concrete
entities have an ArbitraryEntity subclass that allows the
definition of custom or domain-specific entities with arbitrary
attributes.

To simplify the definition of requirements in a given domain
we could predefine the most relevant entities in that domain
based on existing ontologies for the domain. This is a trade-off
between the size of the DSL and its ease of use.

IV. CONCRETE SYNTAX

This section introduces the concrete syntax of our DSL,
which conforms to the previously detailed metamodel. The
concrete syntax defines the rules ensuring a consistent and
standardized use of the language. In this paper, we present a
textual concrete syntax implemented with ANTLR, a powerful
tool to generate language parsers from grammars.

We start by introducing the grammar and next an example
MERLAN specification following the grammar. Listing 1
presents an excerpt of the DSL grammar.

Listing 1. MERLAN ANTLR grammar; main rules.
1 grammar MERLAN;
2

3 script
4 : entities?
5 requirements?
6 ;
7

8 entities
9 : ENTITIES NEWLINE

10 concrete_entities?
11 abstract_entities?
12 ;
13

14 concrete_entities
15 : CONCRETE NEWLINE concrete_entity*
16 ;
17

18 concrete_entity
19 : ID NEWLINE attribute*
20 ;
21

22 // Other rules omitted for brevity
23

24 requirement
25 : complex_requirement
26 | simple_requirement
27 ;
28

29 complex_requirement
30 : (AND | OR) NEWLINE requirement+
31 | NOT NEWLINE requirement
32 ;
33

34 simple_requirement
35 : abstract_requirement
36 | concrete_requirement
37 ;
38

39 concrete_requirement
40 : CONCRETE cardinality? NEWLINE attribute*
41 ;

42

43 // Other rules omitted for brevity

The grammar defines the syntactic rules allowed in MER-
LAN language. At the first level, the script rule indicates
that entities and requirements can be defined.

Some rules start with an uppercase keyword to divide
the code into clear sections (e.g., see ENTITIES). The
entities section can include concrete or abstract enti-
ties. For brevity, we excluded the abstract_entities
rule (among others) in this paper, but it is analogous to
concrete_entities. A concrete entity is defined by its
name (i.e., the ID) and any number of attributes.

A requirement can be either complex or simple. A
complex_requirement starts with a boolean operator
(AND, OR or NOT) and a set of requirements (limited to 1 if the
operator is NOT). A simple_requirement can be either
abstract or concrete, where concrete_requirement can
have a custom cardinality. Simple requirements contain a set
of attributes, where some of them are mandatory. Mandatory
attributes are not specified since the grammar’s purpose is
to ensure syntactical consistency. Evaluation on the missing
attributes (as well as cardinality correctness) is done during the
parser execution (i.e., when parsing a MERLAN code script).
Mandatory attributes include confidence, modality and
entity (those apply to simple requirements only) and name.

Listing 2 shows an example MERLAN code that defines
entities and requirements following the previously proposed
running example of a house agent in Section II.

Listing 2. Example MERLAN code.
1 ENTITIES:
2 CONCRETE:
3 person
4 - gender: ?
5 - ethnicity: ?
6 smoke
7 fire
8 dog
9 - breed: "labrador"

10 car:
11 - model: ?
12 - color: ?
13 ABSTRACT:
14 night
15 - description: "The image is taken at

night"
16 empty_house
17 - description: "The house is empty"
18 REQUIREMENTS:
19 requirement1:
20 CONCRETE
21 - entity: smoke
22 - name: "smoke"
23 - modality: "image"
24 - confidence: 0.5
25 requirement2
26 OR
27 CONCRETE
28 - entity: fire
29 - name: "fire"
30 - confidence: 0.5



31 - modality: "image"
32 AND
33 ABSTRACT
34 - entity: empty_house
35 - name: "empty_house"
36 - confidence: 0.3
37 - modality: "image"
38 OR
39 CONCRETE [1..*]
40 - entity: person
41 - name: "unknown_person"
42 - confidence: 0.7
43 - modality: "image"
44 - gender: "male"
45 CONCRETE [1..*]
46 - entity: car
47 - name: "unknown_car"
48 - confidence: 0.7
49 - modality: "image"

The first code block, identified with the ENTITIES key-
word, contains all the entity definitions following the grammar
rules. In this example, there are entities without attributes
(see smoke and fire), an entity dog with an attribute with
specific value (breed: "labrador") and other entities
(person and car) with attributes with empty values.

The requirements block, under the REQUIREMENTS key-
word, contains the 2 example requirements defined in Section
II. requirement2 contains a composition of complex re-
quirements where 2 of the inner simple requirements define
cardinalities of [1..*] (i.e., minimum 1 instance). The
requirement referencing the person entity shows how to set
an entity attribute’s value at the requirement level (see the
gender: "male" attribute).

V. TOOL SUPPORT

The full ANTLR grammar to use MERLAN is available in
our open source repository in GitHub.

With the grammar, requirement engineers can describe full
MERLAN specifications. But to make these specifications
more actionable and offer a better Return On Investment
(ROI) from them, we have also implemented a prproof-of-
concept implementation to derive an agent implementation that
understand and reacts to the requirement conditions effectively
triggering a change on state based on detecting the satisfiability
of the conditions on a multimodel input.

More specifically, we have implemented a transformation
that, given a MERLAN specification creates an agent imple-
mented on top of the BESSER Agentic Framework2 where
the MERLAN requirements have been transformed into a set
of agent triggering conditions. Listing 3 shows the generated
code for the example MERLAN code in Listing 2

The transformation is implemented via a custom implemen-
tation of a tree visitor pattern that traverses the abstract syntax
tree generated by the MERLAN ANTLR parser. Note that
this approach can be eaisly replicated for any language or
agentic framework that supports similar requirements-based
transitions.

2https://github.com/BESSER-PEARL/BESSER-Agentic-Framework

The agentic framework we selected comes with integrated
LLMs and Computer Vision models that capture information
from a multimodal environment, which is used in real time
to evaluate the requirements matching. The generated code
includes multimodal entities, attached to the agent’s entity
database, and the requirements’ conditions themselves. Based
on this input processing component, the agent developer
can complete the agent specification expressing the response
behaviour to be executed in response of a triggering condition.

VI. RELATED WORK

In this section, we discuss the work related to the specifica-
tion of requirements for MUIs. We focus first on frameworks
that explicitly address the creation of MUIs to then cover
other approaches closer to the requirements engineering field,
proposing languages to express requirements for some types
of advanced interfaces.

A. Multimodal User Interfaces

Recent work around MUIs is focusing on the exploitation of
Machine Learning techniques to automatically extract patterns
and insights from data [5].

A variety of frameworks have been proposed for this pur-
pose. Xspeak [6] added a speech interface on top of X Window
System, allowing to use words to interact with windows.
Open Agent Architecture (OAA) [7] proposed a framework for
multiagent systems with MUIs that included spoken language,
handwriting and gesture. Openinterface [8] is another tool
to design MUIs, providing its own runtime and IDE. The
Squidy Interaction Library [9] proposed a library to reduce
the efforts of designing MUIs, integrating different toolkits
and frameworks in a common library integrating a GUI, hiding
complexity by providing a visual language and a collection of
devices and interaction techniques.

There is also a particular interest on MUIs in the robotics
and healthcare domains. For instance, AMIR [10] is an assis-
tive robot with voice and gesture-based interfaces, and FIRMA
[11], a development framework for elderly-friendly interactive
multimodal applications for assistive robots. MUIs also have
a strong presence in smart home user interfaces [12].

Nevertheless, all these approaches focus on the development
of the MUIs themselves not on the formalization of the
requirements they are supposed to implement, which is exactly
the purpose of our MERLAN proposal.

B. Domain-Specific Languages

DSLs are used in many Machine Learning problems [13],
including DSLs that focus on formalizing requirements [14].
An example is Impromptu [15] proposed a DSL to define
structured prompts in a modular and tool-independent way.
Other DSLs focus more on fairness aspects of Machine
Learning, e.g. [16], [17].

Closer to our work, other DSLs cover multimodal aspects
of software components. For instance, SEMKIS [18] focus on
requirements engineering of datasets and neural networks to
improve recognition skills. ViSaL [19] allows the programmer

https://github.com/BESSER-PEARL/BESSER-Agentic-Framework


Listing 3. Generated Python code.
1 # Entities
2 person = ConcreteEntity(name="person", attributes={"gender": None, "ethnicity": None})
3 smoke = ConcreteEntity(name="smoke", attributes={})
4 fire = ConcreteEntity(name="fire", attributes={})
5 dog = ConcreteEntity(name="dog", attributes={"breed": "labrador"})
6 car = ConcreteEntity(name="car", attributes={"brand": None, "model": None, "color": None})
7 night = AbstractEntity(name="night", attributes={"description": "The image is taken at

night"})
8 empty_house = AbstractEntity(name="empty_house", attributes={"description": "The house is

empty"})
9 # Requirements

10 requirement1 = RequirementDefinition("requirement1")
11 requirement1.set(ConcreteRequirement(name="smoke", concrete_entity=smoke,

attributes={"modality": "image", "confidence": 0.5}))
12 requirement2 = RequirementDefinition("requirement2")
13 requirement2.set(
14 OR([
15 ConcreteRequirement(name="fire", concrete_entity=fire, attributes={"confidence": 0.5,

"modality": "image"}),
16 AND([
17 AbstractRequirement(name="empty_house", abstract_entity=empty_house,

attributes={"confidence": 0.3, "modality": "image"}),
18 OR([
19 ConcreteRequirement(name="man", concrete_entity=person, attributes={"min": 1, "max":

0, "confidence": 0.7, "modality": "image", "gender": "male"}),
20 ConcreteRequirement(name="unknown_car", concrete_entity=car, attributes={"min": 1,

"max": 0, "confidence": 0.7, "modality": "image"})
21 ])
22 ])
23 ])
24 )
25

26 # The following code is not automatically generated. It ilustrates how to use a requirement
to define transitions between the agent states (agent definition code ommited for brevity)

27 initial_state.when_requirement_matched_go_to(requirement1, smoke_state)

to express image quality detection rules for enforcing safety
constraints, increasing trustworthiness in robot perception sys-
tems. FVision [20] designed as a Haskell library as a DSL
to build and test visual tracking systems. The Midgar IoT
platform was extended by adding a Computer Vision module
to automate camera input analysis. Their approach detects
only people, requiring model training for other objects. They
propose developing a DSL to streamline the Computer Vision
pipeline [21]. Note that there are existing resources to evaluate
such systems, such as CLEVR [22], which proposed a dataset
to benchmark visual reasoning in smart systems. More specific
to the chatbot domain, [3] and [23] propose DSLs for intent
matching and entity recognition in textual inputs.

Note that the above examples target specific types of inputs
and, many of them, specific environments, while MERLAN
aims to provide a multimodal requirements solution combining
different types of requirements and entities (including concrete
and abstract ones) and conditions on them, opening the door
to the creation of powerful multimodal agents that satisfy the
user requirements.

VII. RESEARCH ROADMAP

To fully define a robust and expressive Domain-Specific Re-
quirements Language for Multimodal User Interfaces, several
key aspects must be addressed. In what follows we list some
of them.

• Add a graphical notation to MERLAN, enhancing usabil-
ity and making it easier for less-technical practitioners
and engineers to specify and visualize MUI requirements.
This should even include a visual modeling by example
component where users could give images as example
scenarios that should trigger an action in the system. Al-
ternative, also the option to simply describe a requirement
in natural language. Machine Learning can be used to
support this task.

• Extend the language to cover also the specification of
requirements on the behaviour to perform when the
conditions are matched. For ”traditional” actions, existing
behavioural languages (e.g. UML specifications) could
suffice but for multimodal responses, an extension to
MERLAN, where multimodality is already a first-class
element could be a better option.

• Time conditions to enable expressing temporal constraints



in the requirements, e.g.. constraints on the duration of a
certain object in a video before triggering an action

• Additionally, hierarchical modalities should be explored,
where higher-level modalities (e.g., gestures or facial ex-
pressions) are derived from lower-level ones (e.g., images
or video). This hierarchical structuring will enable more
precise and flexible requirements definitions for complex
multimodal interactions.

• Quality analysis to detect inconsistencies and conflicts
among multimodal requirements. For example, certain
attributes, such as color, are relevant only in image-
based modalities and may not be applicable in textual
or auditory contexts. Or more challenging to detect,
two conditions in an image may be mutually exclusive,
implying that such condition can never be satisfied.

VIII. CONCLUSIONS

In this paper, we introduced MERLAN, a Domain-Specific
Language designed to standardize the specification of require-
ments for Multimodal User Interfaces (MUIs). Our approach
leverages a metamodel-based formalization and a textual
concrete syntax to facilitate the specification process while
also providing a proof-of-concept implementation showing a
potential path to transform these requirements into actionable
agent code to execute the requirements in real-time multimodal
environments.

Future work will focus on expanding the capabilities of
MERLAN by addressing the open challenges discussed above.
Additionally, we aim to conduct empirical validation exper-
iments and extend our tool support to foster adoption our
language and infrastructure by researchers and practitioners in
the field. As part of such tool extension, we plan to develop a
library of predefined entities, based on existing ontologies, to
be imported and reused when expressing new requirements.

REFERENCES

[1] M. Z. Baig and M. Kavakli, “Multimodal systems: Taxonomy, methods,
and challenges,” 2020. [Online]. Available: https://arxiv.org/abs/2006.
03813

[2] L. M. Reeves, J. Lai, J. A. Larson, S. Oviatt, T. S. Balaji, S. Buisine,
P. Collings, P. Cohen, B. Kraal, J.-C. Martin, M. McTear, T. Raman,
K. M. Stanney, H. Su, and Q. Y. Wang, “Guidelines for multimodal user
interface design,” Commun. ACM, vol. 47, no. 1, p. 57–59, Jan. 2004.
[Online]. Available: https://doi-org.proxy.bnl.lu/10.1145/962081.962106

[3] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Xatkit: A multimodal
low-code chatbot development framework,” IEEE Access, vol. 8, pp.
15 332–15 346, 2020.

[4] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, p.
316–344, Dec. 2005. [Online]. Available: https://doi-org.proxy.bnl.lu/
10.1145/1118890.1118892

[5] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine
learning: A survey and taxonomy,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 2, pp. 423–443, 2019.

[6] C. Schmandt, M. Ackerman, and D. Hindus, “Augmenting a window
system with speech input,” Computer, vol. 23, no. 8, pp. 50–56, 1990.

[7] D. B. Moran, A. J. Cheyer, L. E. Julia, D. L. Martin, and
S. Park, “Multimodal user interfaces in the open agent architecture,”
in Proceedings of the 2nd International Conference on Intelligent
User Interfaces, ser. IUI ’97. New York, NY, USA: Association
for Computing Machinery, 1997, p. 61–68. [Online]. Available:
https://doi-org.proxy.bnl.lu/10.1145/238218.238290

[8] M. Serrano, L. Nigay, J.-Y. L. Lawson, A. Ramsay, R. Murray-Smith,
and S. Denef, “The openinterface framework: a tool for multimodal
interaction.” in CHI ’08 Extended Abstracts on Human Factors
in Computing Systems, ser. CHI EA ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 3501–3506. [Online].
Available: https://doi.org/10.1145/1358628.1358881

[9] W. A. König, R. Rädle, and H. Reiterer, “Interactive design of
multimodal user interfaces,” Journal on Multimodal User Interfaces,
vol. 3, no. 3, pp. 197–213, Apr 2010. [Online]. Available:
https://doi.org/10.1007/s12193-010-0044-2

[10] D. Ryumin, I. Kagirov, A. Axyonov, N. Pavlyuk, A. Saveliev,
I. Kipyatkova, M. Zelezny, I. Mporas, and A. Karpov, “A multimodal
user interface for an assistive robotic shopping cart,” Electronics, vol. 9,
no. 12, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/
12/2093

[11] N. Kazepis, M. Antona, and C. Stephanidis, “Firma: A development
framework for elderly-friendly interactive multimodal applications for
assistive robots,” 04 2016.

[12] M. Blumendorf and S. Albayrak, “Towards a framework for the develop-
ment of adaptive multimodal user interfaces for ambient assisted living
environments,” in Universal Access in Human-Computer Interaction.
Intelligent and Ubiquitous Interaction Environments, C. Stephanidis, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 150–159.

[13] I. Portugal, P. Alencar, and D. Cowan, “A preliminary survey on
domain-specific languages for machine learning in big data,” in 2016
IEEE International Conference on Software Science, Technology and
Engineering (SWSTE), 2016, pp. 108–110.

[14] Z. Pei, L. Liu, C. Wang, and J. Wang, “Requirements engineering
for machine learning: A review and reflection,” in 2022 IEEE 30th
International Requirements Engineering Conference Workshops (REW),
2022, pp. 166–175.

[15] S. Morales, R. Clarisó, and J. Cabot, “Impromptu: a framework for
model-driven prompt engineering,” Software and Systems Modeling, Jan
2025. [Online]. Available: https://doi.org/10.1007/s10270-024-01235-4

[16] A. Yohannis and D. Kolovos, “Towards model-based bias mitigation in
machine learning,” in Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, ser. MODELS
’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 143–153. [Online]. Available: https://doi.org/10.1145/3550355.
3552401

[17] J. Giner-Miguelez, A. Gómez, and J. Cabot, “Describeml: A dataset
description tool for machine learning,” Sci. Comput. Program., vol.
231, p. 103030, 2024. [Online]. Available: https://doi.org/10.1016/j.
scico.2023.103030

[18] B. Jahić, N. Guelfi, and B. Ries, “Semkis-dsl: A domain-specific
language to support requirements engineering of datasets and neural
network recognition,” Information, vol. 14, no. 4, 2023. [Online].
Available: https://www.mdpi.com/2078-2489/14/4/213

[19] J. T. M. Ingibergsson, D. Kraft, and U. P. Schultz, “Safety computer
vision rules for improved sensor certification,” in 2017 First IEEE
International Conference on Robotic Computing (IRC), 2017, pp. 89–92.

[20] J. Peterson, P. Hudak, A. Reid, and G. Hager, “Fvision: A declarative
language for visual tracking,” in Practical Aspects of Declarative
Languages, I. V. Ramakrishnan, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 304–321.

[21] C. González Garcı́a, D. Meana-Llorián, B. C. Pelayo G-Bustelo,
J. M. Cueva Lovelle, and N. Garcia-Fernandez, “Midgar: Detection of
people through computer vision in the internet of things scenarios to
improve the security in smart cities, smart towns, and smart homes,”
Future Generation Computer Systems, vol. 76, pp. 301–313, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X16308652

[22] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick,
and R. Girshick, “Clevr: A diagnostic dataset for compositional language
and elementary visual reasoning,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 1988–1997.

[23] S. Pérez-Soler, E. Guerra, and J. de Lara, “Model-driven chatbot
development,” in Conceptual Modeling - 39th International Conference,
ER 2020, Vienna, Austria, November 3-6, 2020, Proceedings,
ser. Lecture Notes in Computer Science, G. Dobbie, U. Frank,
G. Kappel, S. W. Liddle, and H. C. Mayr, Eds., vol. 12400.
Springer, 2020, pp. 207–222. [Online]. Available: https://doi.org/10.
1007/978-3-030-62522-1 15

https://arxiv.org/abs/2006.03813
https://arxiv.org/abs/2006.03813
https://doi-org.proxy.bnl.lu/10.1145/962081.962106
https://doi-org.proxy.bnl.lu/10.1145/1118890.1118892
https://doi-org.proxy.bnl.lu/10.1145/1118890.1118892
https://doi-org.proxy.bnl.lu/10.1145/238218.238290
https://doi.org/10.1145/1358628.1358881
https://doi.org/10.1007/s12193-010-0044-2
https://www.mdpi.com/2079-9292/9/12/2093
https://www.mdpi.com/2079-9292/9/12/2093
https://doi.org/10.1007/s10270-024-01235-4
https://doi.org/10.1145/3550355.3552401
https://doi.org/10.1145/3550355.3552401
https://doi.org/10.1016/j.scico.2023.103030
https://doi.org/10.1016/j.scico.2023.103030
https://www.mdpi.com/2078-2489/14/4/213
https://www.sciencedirect.com/science/article/pii/S0167739X16308652
https://www.sciencedirect.com/science/article/pii/S0167739X16308652
https://doi.org/10.1007/978-3-030-62522-1_15
https://doi.org/10.1007/978-3-030-62522-1_15

	Introduction
	Running Example
	DSL Design
	Definition of Multimodal Requirements
	Complex Requirements
	Simple Requirements

	Definition of Entities
	Concrete Entities
	Abstract Entities
	Predefined and Arbitrary Entities


	Concrete Syntax
	Tool Support
	Related Work
	Multimodal User Interfaces
	Domain-Specific Languages

	Research Roadmap
	Conclusions
	References

